
Know Your Network

Chris McNab

Network
Security
Assessment

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

36

Chapter 4CHAPTER 4

IP Network Scanning

This chapter focuses on the technical execution of IP network scanning. After under-
taking initial reconnaissance to identify IP address spaces of interest, network scan-
ning builds a clearer picture of accessible hosts and their network services. Network
scanning and reconnaissance is the real data gathering exercise of an Internet-based
security assessment. The rationale behind IP network scanning is to gain insight into
the following elements of a given network:

• ICMP message types that generate responses from target hosts

• Accessible TCP and UDP network services running on the target hosts

• Operating platforms of target hosts and their configuration

• Areas of vulnerability within target host IP stack implementations (including
sequence number predictability for TCP spoofing and session hijacking)

• Configuration of filtering and security systems (including firewalls, border rout-
ers, switches, and IDS sensors)

Performing both network scanning and reconnaissance tasks paints a clear picture of
the network topology and its security mechanisms. Before penetrating the target net-
work, further assessment steps involve gathering specific information about the TCP
and UDP network services that are running, including their versions and enabled
options.

ICMP Probing
The Internet Control Message Protocol (ICMP) identifies potentially weak and
poorly protected networks. ICMP is a short messaging protocol that’s used by sys-
tems administrators and end users for continuity testing of networks (e.g., using the
ping or traceroute commands). From a network scanning and probing perspective,
the following types of ICMP messages are useful:

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

ICMP Probing | 37

Type 8 (echo request)
Echo request messages are also known as ping packets. You can use a scanning
tool such as nmap to perform ping sweeping and easily identify hosts that are
accessible.

Type 13 (timestamp request)
A timestamp request message requests system time information from the target
host. The response is in a decimal format and is the number of milliseconds
elapsed since midnight GMT.

Type 15 (information request)
The ICMP information request message was intended to support self-configur-
ing systems such as diskless workstations at boot time, to allow them to dis-
cover their network address. Protocols such as RARP, BOOTP, or DHCP do so
more robustly, so type 15 messages are rarely used.

Type 17 (subnet address mask request)
An address mask request message reveals the subnet mask used by the target
host. This information is useful when mapping networks and identifying the size
of subnets and network spaces used by organizations.

Firewalls of security-conscious organizations often blanket-filter inbound ICMP mes-
sages and so ICMP probing isn’t effective; however, ICMP isn’t filtered in most net-
works because ICMP messages are often useful for network troubleshooting
purposes.

There are a handful of other ICMP message types that have relevant security applica-
tions (such as ICMP type 5 redirect messages sent by routers), but they aren’t related
to network scanning.

Table 4-1 outlines popular operating systems and their responses to certain types of
direct ICMP query messages.

Table 4-1. Operating system responses to direct ICMP query messages

Operating system Direct ICMP message types (non-broadcast)

8 13 15 17

Linux Yes Yes No No

*BSD Yes Yes No No

Solaris Yes Yes No Yes

HP-UX Yes Yes Yes No

AIX Yes Yes Yes No

Ultrix Yes Yes Yes Yes

Windows 95, 98, and ME Yes Yes No Yes

Windows NT 4.0 Yes No No No

Windows 2000 Yes Yes No No

Cisco IOS Yes Yes Yes No

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

38 | Chapter 4: IP Network Scanning

Indirect ICMP query messages can be sent to the broadcast address of a given subnet
(such as 192.168.0.255 in a 192.168.0.0/24 network). Operating systems respond in
different ways to indirect queries issued to a broadcast address, as shown in
Table 4-2.

Ofir Arkin of the Sys-Security Group (http://www.sys-security.com) has undertaken a
lot of research into ICMP over recent years, publishing white papers dedicated
entirely to the use of ICMP probes for OS fingerprinting. For quality in-depth details
of ICMP probing techniques, please consult his research available from his web site.

SING
Send ICMP Nasty Garbage (SING) is a command-line tool that sends fully customiz-
able ICMP packets. The main purpose of the tool is to replace the ping command
with certain enhancements, including the ability to transmit and receive spoofed
packets, send MAC-spoofed packets, and support the transmission of many other
message types, including ICMP address mask, timestamp, and information requests,
router solicitation, and router advertisement messages.

SING is available from http://sourceforge.net/projects/sing/.* Examples using the sing
utility to launch ICMP echo, timestamp, and address mask requests follow. In these
examples, I direct probes at broadcast addresses and individual hosts.

Using sing to send broadcast ICMP echo request messages:

sing -echo 192.168.0.255

SINGing to 192.168.0.255 (192.168.0.255): 16 data bytes

Table 4-2. Operating system responses to broadcast ICMP query messages

Operating system Indirect ICMP message types (broadcast)

8 13 15 17

Linux Yes Yes No No

*BSD No No No No

Solaris Yes Yes No No

HP-UX Yes Yes Yes No

AIX No No No No

Ultrix No No No No

Windows 95, 98, and ME No No No No

Windows NT 4.0 No No No No

Windows 2000 No No No No

Cisco IOS No No Yes No

* URLs for tools in this book are mirrored at the O’Reilly site, http://examples.oreilly.com/networksa/tools.

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

ICMP Probing | 39

16 bytes from 192.168.0.1: seq=0 ttl=64 TOS=0 time=0.230 ms

16 bytes from 192.168.0.155: seq=0 ttl=64 TOS=0 time=2.267 ms

16 bytes from 192.168.0.126: seq=0 ttl=64 TOS=0 time=2.491 ms

16 bytes from 192.168.0.50: seq=0 ttl=64 TOS=0 time=2.202 ms

16 bytes from 192.168.0.89: seq=0 ttl=64 TOS=0 time=1.572 ms

Using sing to send ICMP timestamp request messages:

sing -tstamp 192.168.0.50

SINGing to 192.168.0.50 (192.168.0.50): 20 data bytes

20 bytes from 192.168.0.50: seq=0 ttl=128 TOS=0 diff=327372878

20 bytes from 192.168.0.50: seq=1 ttl=128 TOS=0 diff=1938181226*

20 bytes from 192.168.0.50: seq=2 ttl=128 TOS=0 diff=1552566402*

20 bytes from 192.168.0.50: seq=3 ttl=128 TOS=0 diff=1183728794*

Using sing to send ICMP address mask request messages:

sing -mask 192.168.0.25

SINGing to 192.168.0.25 (192.168.0.25): 12 data bytes

12 bytes from 192.168.0.25: seq=0 ttl=236 mask=255.255.255.0

12 bytes from 192.168.0.25: seq=1 ttl=236 mask=255.255.255.0

12 bytes from 192.168.0.25: seq=2 ttl=236 mask=255.255.255.0

12 bytes from 192.168.0.25: seq=3 ttl=236 mask=255.255.255.0

nmap
nmap can perform ICMP ping-sweep scans of target address spaces easily and rela-
tively quickly. Many hardened networks will blanket-filter inbound ICMP messages
at border routers or firewalls, so sweeping in this fashion isn’t effective in some cases.
Example 4-1 demonstrates how nmap can be run from a Unix-based or Win32 com-
mand prompt to perform an ICMP ping sweep against 192.168.0.0/24. nmap is avail-
able from http://www.insecure.org/nmap/.

Example 4-1. Performing a ping sweep with nmap

nmap -sP -PI 192.168.0.0/24

Starting nmap 3.45 (www.insecure.org/nmap/)

Host (192.168.0.0) seems to be a subnet broadcast address (2 extra pings).

Host (192.168.0.1) appears to be up.

Host (192.168.0.25) appears to be up.

Host (192.168.0.32) appears to be up.

Host (192.168.0.50) appears to be up.

Host (192.168.0.65) appears to be up.

Host (192.168.0.102) appears to be up.

Host (192.168.0.110) appears to be up.

Host (192.168.0.155) appears to be up.

Host (192.168.0.255) seems to be a subnet broadcast address (2 extra pings).

Nmap run completed -- 256 IP addresses (8 hosts up)

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 4: IP Network Scanning

Using the -sP ping sweep flag within nmap doesn’t just perform an
ICMP echo request to each IP address; it also sends TCP ACK and
SYN probe packets to port 80 of each host. In Example 4-1, nmap is
run with the -PI flag, to specify that we’re sending only ICMP echo
requests. Overall, using the standard -sP flag is often more effective
because it identifies web servers that may not respond to ICMP
probes; however, in some environments it is beneficial to use more
specific probe types.

Gleaning Internal IP Addresses
In some cases, it is possible to gather internal IP address information by analyzing all
ICMP responses with a stateful inspection system such as a personal firewall on your
workstation or a Linux machine on the edge of your network performing stateful
inspection of all IP traffic.

After sending an ICMP echo request to a publicly accessible IP address, the target
firewall often uses network address translation to forward the packet to the correct
internal IP address (within a DMZ or internal network space). If the firewall is con-
figured to permit ICMP echo request messages to go through and fully forwards
ICMP echo request messages (as opposed to rewriting the headers as proxies do),
sometimes unsolicited ICMP echo reply messages appear from private IP addresses.

Tools such as nmap and sing don’t identify these responses from private addresses,
because doing so requires low-level stateful analysis of the traffic flowing into and
out of a network, such as performed by a firewall. A quick and simple example of
this behavior is to watch the ISS BlackICE event log in Figure 4-1 as a simple ICMP
ping sweep is undertaken using SuperScan or a similar tool.

Figure 4-1 shows that ISS BlackICE has identified four unsolicited ICMP echo replies
from private addresses (within the 172.16.0.0/16 space in this case, but they are
often within 192.168.0.0/16 or 10.0.0.0/8). By carefully monitoring such a stateful
inspection mechanism when performing any kind of probing or network scanning,
you can gain useful insight into areas of target network configuration.

A Linux system running tcpdump or ethereal can be used to great effect on our pene-
tration testing launch network simply by picking up ICMP echo reply messages and
filtering out public and nonpublic addresses using simple awk scripts.

Identifying Subnet Broadcast Addresses
Subnet broadcast addresses can be easily extracted using functionality within nmap
that monitors the number of ICMP echo replies when a ping sweep is initiated. Such
broadcast addresses will respond with multiple replies if they aren’t filtered, which
lets you see how to segment the target network space. Example 4-2 shows nmap
mapping out the broadcast addresses in use for a pool of ADSL routers and systems.

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

ICMP Probing | 41

Figure 4-1. ISS BlackICE statefully gleans internal IP addresses

Example 4-2. Identifying subnet broadcast addresses with nmap

nmap -sP 62.2.15.0/24

Starting nmap 3.45 (www.insecure.org/nmap/)

Host 62.2.15.8 seems to be a subnet broadcast address (returned 1 extra pings).

Host pipex-gw.abcconsulting.co.uk (62.2.15.9) appears to be up.

Host mail.abc.co.uk (62.2.15.10) appears to be up.

Host www-dev.abc.co.uk (62.2.15.13) appears to be up.

Host 62.2.15.15 seems to be a subnet broadcast address (returned 1 extra pings).

Host 62.2.15.16 seems to be a subnet broadcast address (returned 1 extra pings).

Host pipex-gw.smallco.net (62.2.15.17) appears to be up.

Host mail.smallco.net (62.2.15.18) appears to be up.

Host 62.2.15.19 seems to be a subnet broadcast address (returned 1 extra pings).

Host 62.2.15.20 seems to be a subnet broadcast address (returned 1 extra pings).

Host pipex-gw.example.org (62.2.15.21) appears to be up.

Host mail.example.org (62.2.15.22) appears to be up.

Host www.example.org (62.2.15.25) appears to be up.

Host ext-26.example.org (62.2.15.26) appears to be up.

Host ext-27.example.org (62.2.15.27) appears to be up.

Host staging.example.org (62.2.15.28) appears to be up.

Host 62.2.15.35 seems to be a subnet broadcast address (returned 1 extra pings).

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 4: IP Network Scanning

This scan has identified three separate subnets within the 62.2.15.0 network:

• The abc.co.uk subnet from 62.2.15.8 to 62.2.15.15 (8 addresses)

• The smallco.net subnet from 62.2.15.16 to 62.2.15.19 (4 addresses)

• The example.org subnet from 62.2.15.20 to 62.2.15.35 (16 addresses)

TCP Port Scanning
Accessible TCP ports can be identified by port scanning target IP addresses. The fol-
lowing nine different types of TCP port scanning are used in the wild by both attack-
ers and security consultants:

Standard scanning methods
Vanilla connect() scanning
Half-open SYN flag scanning

Stealth TCP scanning methods
Inverse TCP flag scanning
ACK flag probe scanning
TCP fragmentation scanning

Third-party and spoofed TCP scanning methods
FTP bounce scanning
Proxy bounce scanning
Sniffer-based spoofed scanning
IP ID header scanning

What follows is a technical breakdown for each TCP port scanning type, along with
details of Windows and Unix-based tools that can perform scanning.

Standard Scanning Methods
Standard scanning methods, such as vanilla and half-open SYN scanning, are
extremely simple direct techniques used to identify accessible TCP ports and services
accurately. These scanning methods are reliable but are easily logged and identified.

Vanilla connect() scanning

TCP connect() port scanning is the most simple type of probe to launch. There is no
stealth whatsoever involved in this form of scanning because a full TCP/IP connec-
tion is established with TCP port one of the target host, then incrementally through
ports two, three, four, and so on.

TCP/IP’s reliability as a protocol, vanilla port scanning is a very accurate way to
determine which TCP services are accessible on a given target host. Figures 4-2 and
4-3 show the various TCP packets and their flags, as they are sent and received by
the attacker and the host he is scanning.

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

TCP Port Scanning | 43

In Figure 4-2, the attacker first sends a SYN probe packet to the port he wishes to
test. Upon receiving a packet from the port with the SYN and ACK flags set, he
knows that the port is open. The attacker completes the three-way handshake by
sending an ACK packet back.

If, however, the target port is closed, the attacker receives an RST/ACK packet
directly back, as shown in Figure 4-3.

As before, the attacker sends a SYN probe packet, but the target server responds with
an RST/ACK. Standard connect() scanning in this way is a reliable way to identify
accessible TCP network services. The downside is that the scanning type is extremely
simple and hence easily identified and logged.

Tools that perform connect() TCP scanning. nmap can perform a TCP connect() port scan
using the -sT flag. Other very simple scanners exist; one such as pscan.c, which is
available as source code from many sites, including Packet Storm (http://www.
packetstormsecurity.org).

For Windows, Foundstone’s SuperScan is an excellent port-scanning utility with
good functionality. It’s available from http://www.foundstone.com/knowledge/
scanning.html.

When performing a full assessment exercise, every TCP port from 0 to
65535 should be checked. For speed reasons, tools such as SuperScan
and nmap have internal lists of only some 1,500 common ports to
check; thus they often miss all kinds of interesting services that can be
found on high ports—for example, Check Point SVN web services on
TCP port 18264.

Figure 4-2. A vanilla TCP scan result when a port is open

Figure 4-3. A vanilla TCP scan result when a port is closed

Attacker Target host

SYN/ACK
SYN

ACK

Attacker Target host

RST/ACK
SYN

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 4: IP Network Scanning

Half-open SYN flag scanning

Usually, a three-way handshake is initiated to synchronize a connection between two
hosts; the client sends a SYN packet to the server, which responds with SYN and ACK
if the port is open, and the client then sends an ACK to complete the handshake.

In the case of half-open SYN port scanning when a port is found to be listening, an
RST packet is sent as the third part of the handshake. Sending an RST packet in this
way abruptly resets the TCP connection, and because you have not completed the
three-way handshake, the connection attempt often isn’t logged on the target host.

Most intrusion detection systems (IDS) and other security programs, such as
portsentry, can easily detect and prevent half-open SYN port-scanning attempts. In
cases where stealth is required, other techniques are recommended, such as FIN or
TTL-based scanning, or even using a utility such as fragroute, to fragment outbound
probe packets.

Figures 4-4 and 4-5 outline the packets sent between the two hosts when launching a
SYN port scan and finding either an open and a closed port.

In Figure 4-5, a SYN probe packet is sent to the target port; a SYN/ACK packet is
received indicating that the port is open. Normally at this stage, a connect() scanner
sends an ACK packet to establish the connection, but this is half-open scanning so
instead, a RST packet is sent to tear down the connection.

Figure 4-4 shows that when a closed port is found, a RST/ACK packet is received,
and nothing happens (as before in Figure 4-3). The benefit of half-open scanning is
that a true three-way TCP handshake is never completed, and the connection doesn’t
appear to be established.

Nowadays, all IDS and personal firewall systems can identify SYN port scans
(although they often mislabel them as SYN flood attacks due to the number of probe

Figure 4-4. A half-open SYN scan result when a port is closed

Figure 4-5. A half-open SYN scan result when a port is open

Attacker Target host

RST/ACK
SYN

Attacker Target host

SYN/ACK
SYN

RST

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

TCP Port Scanning | 45

packets). SYN scanning is fast and reliable, although it requires raw access to net-
work sockets and, therefore, privileged access to Unix and Windows hosts.

Tools that perform half-open SYN scanning. nmap can perform a SYN port scan under
both Unix and Windows environments using the -sS flag. Many other Unix half-
open port scanners exist, including strobe, which is available in source form from
many sites including Packet Storm (http://www.packetstormsecurity.org).

The -T flag can be used within nmap to change the timing policy used
when scanning. Networks protected by commercial firewalls
(NetScreen, WatchGuard, and Check Point in particular) will some-
times drop SYN probes if nmap is sending the packets out too quickly,
nmap’s actions resemble a SYN flood denial of service attack. I have
found that by setting the timing policy to -T Sneaky, it’s often possible
to glean accurate results against hosts protected by firewalls with SYN
flood protection enabled.

A second SYN port scanner worth mentioning is the scanrand component of the
Paketto Keiretsu suite by Dan Kaminsky. Paketto Keiretsu contains a number of use-
ful networking utilities that are available at http://www.doxpara.com/read.php/code/
paketto.html. The scanrand tool is very well designed, with distinct SYN probing and
background listening components so that you can launch the quickest possible
scans. Inverse SYN cookies (using the HMAC SHA1 hashing algorithm) tag outgo-
ing probe packets, so that false positive results become nonexistent (because the lis-
tening component registers only SYN/ACK responses with the correct cryptographic
cookies). Example 4-3 shows scanrand identifying open ports on a local network in
less than one second.

Example 4-3. Using scanrand to quickly scan the local network

scanrand 10.0.1.1-254:quick

 UP: 10.0.1.38:80 [01] 0.003s

 UP: 10.0.1.110:443 [01] 0.017s

 UP: 10.0.1.254:443 [01] 0.021s

 UP: 10.0.1.57:445 [01] 0.024s

 UP: 10.0.1.59:445 [01] 0.024s

 UP: 10.0.1.38:22 [01] 0.047s

 UP: 10.0.1.110:22 [01] 0.058s

 UP: 10.0.1.110:23 [01] 0.058s

 UP: 10.0.1.254:22 [01] 0.077s

 UP: 10.0.1.254:23 [01] 0.077s

 UP: 10.0.1.25:135 [01] 0.088s

 UP: 10.0.1.57:135 [01] 0.089s

 UP: 10.0.1.59:135 [01] 0.090s

 UP: 10.0.1.25:139 [01] 0.097s

 UP: 10.0.1.27:139 [01] 0.098s

 UP: 10.0.1.57:139 [01] 0.099s

 UP: 10.0.1.59:139 [01] 0.099s

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 4: IP Network Scanning

Due to the way scanrand sends a deluge of SYN probes and then listens for positive
SYN/ACK responses, the order in which the open ports are displayed will look a lit-
tle odd. On the positive side, scanrand is lightning fast; it allows specific ports (e.g.,
common backdoors) to be identified in seconds even across large networks, as
opposed to minutes or hours with a bulkier tool such as nmap.

Stealth TCP Scanning Methods
Stealth scanning methods involve idiosyncrasies in the way TCP/IP stacks of target
hosts process and respond to packets with strange bits set or other features. Such
techniques aren’t effective at accurately mapping the open ports of some operating
systems but do provide a degree of stealth and are sometimes not logged.

Inverse TCP flag scanning

Security mechanisms such as firewalls and IDS usually detect SYN packets being sent
to sensitive ports of target hosts. Programs are also available to log half-open SYN
flag scan attempts, including synlogger and courtney. Probe packets with strange TCP
flags set can sometimes pass through filters undetected, depending on the security
mechanisms deployed.

Using half-open SYN flags to probe a target is known as an inverted technique because
responses are sent back only by closed ports. RFC 793 states that if a port is closed on
a host, an RST/ACK packet should be sent to reset the connection. To take advan-
tage of this feature, attackers send TCP probe packets with various TCP flags set.

A TCP probe packet is sent to each port of the target host. Three types of probe
packet flag configurations are normally used:

• A FIN probe with the FIN TCP flag set

• An XMAS probe with the FIN, URG, and PUSH TCP flags set

• A NULL probe with no TCP flags set

Figures 4-6 and 4-7 depict the probe packets and responses generated by the target
host if the target port is found to be open or closed.

The RFC standard states that, if no response is seen from the target port, the port is
open, or the server is down. This scanning method isn’t necessarily the most accu-
rate, but it is stealthy; it sends garbage to each port that usually won’t be picked up.

 UP: 10.0.1.38:111 [01] 0.127s

 UP: 10.0.1.57:1025 [01] 0.147s

 UP: 10.0.1.59:1025 [01] 0.147s

 UP: 10.0.1.57:5000 [01] 0.156s

 UP: 10.0.1.59:5000 [01] 0.157s

 UP: 10.0.1.53:111 [01] 0.182s

Example 4-3. Using scanrand to quickly scan the local network (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

TCP Port Scanning | 47

For all closed ports on the target host, RST/ACK packets are received. However,
some operating platforms (such as those in the Microsoft Windows family) disre-
gard the RFC 793 standard, so no RST/ACK response is seen when an attempt is
made to connect to a closed port. Hence, this technique is effective against most
Unix-based operating systems.

Tools that perform inverse TCP flag scanning. nmap can perform an inverse TCP flag port
scan under both Unix and Windows environments, using the following flags:

-sF For a scan with only the FIN flag set on probe packets

-sN For a NULL scan with no TCP flags set on probe packets

-sX For an Xmas tree scan with all TCP flags set

vscan is another Windows tool you can use to perform inverse TCP flag scanning.
The utility doesn’t require installation of WinPcap network drivers; instead it uses
raw sockets within Winsock 2 (present in Windows 2000, XP, and 2003). vscan is
available at http://host.deluxnetwork.com/~vsniff/vscan.zip.

ACK flag probe scanning

A stealthy technique documented by Uriel Maimon in Phrack Magazine, Issue 49, is
that of identifying open TCP ports by sending ACK probe packets and analyzing the
header information of the RST packets received from the target host. This technique
exploits vulnerabilities within the BSD derived TCP/IP stack and is therefore only
effective against certain operating systems and platforms. There are two main ACK
scanning techniques that involve:

• Analysis of the time-to-live (TTL) field of received packets

• Analysis of the WINDOW field of received packets

Figure 4-6. An inverse TCP scan result when a port is open

Figure 4-7. An inverse TCP scan result when a port is closed

Attacker Target host

(no response)
Probe packet (FIN/URG/PSH/NULL)

Attacker Target host

RST/ACK
Probe packet (FIN/URG/PSH/NULL)

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 4: IP Network Scanning

These techniques can also check filtering systems and complicated networks to
understand the processes packets go through on the target network. For example,
the TTL value can be used as a marker of how many systems the packet has hopped
through. The firewalk filter assessment tool works in a similar fashion, available from
http://www.packetfactory.net/projects/firewalk/.

Analysis of the TTL field of received packets. To analyze the TTL field data of received
RST packets, an attacker first sends thousands of crafted ACK packets to different
TCP ports, as shown in Figure 4-8.

Here is a log of the first four RST packets received using the hping2 utility:

1: host 192.168.0.12 port 20: F:RST -> ttl: 70 win: 0

2: host 192.168.0.12 port 21: F:RST -> ttl: 70 win: 0

3: host 192.168.0.12 port 22: F:RST -> ttl: 40 win: 0

4: host 192.168.0.12 port 23: F:RST -> ttl: 70 win: 0

By analyzing the TTL value of each packet, an attacker can easily see that the value
returned by port 22 is 40, whereas the other ports return a value of 70. This suggests
that port 22 is open on the target host because the TTL value returned is smaller
than the TTL boundary value of 64.

Analysis of the WINDOW field of received packets. To analyze the WINDOW field data of
received RST packets, an attacker sends thousands of the same crafted ACK packets
to different TCP ports (as shown in Figure 4-8). Here is a log of the first four RST
packets received, again using the hping2 utility:

1: host 192.168.0.20 port 20: F:RST -> ttl: 64 win: 0

2: host 192.168.0.20 port 21: F:RST -> ttl: 64 win: 0

3: host 192.168.0.20 port 22: F:RST -> ttl: 64 win: 512

4: host 192.168.0.20 port 23: F:RST -> ttl: 64 win: 0

Notice that the TTL value for each packet is 64, meaning that TTL analysis of the
packets isn’t effective in identifying open ports on this host. However, by analyzing
the WINDOW values, the attacker finds that the third packet has a non-zero value,
indicating an open port.

The advantage of using ACK flag probe scanning is that detection is difficult (for
both IDS and host-based systems, such as personal firewalls). The disadvantage is

Figure 4-8. ACK probe packets are sent to various ports

Attacker Target host

5000 RST responses
5000 ACK probe packets

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

TCP Port Scanning | 49

that this scanning type relies on TCP/IP stack implementation bugs, which are prom-
inent in BSD-derived systems but not in many other modern platforms.

Tools that perform ACK flag probe scanning. nmap supports ACK flag probe scanning,
with the -sA and -sW flags to analyze the TTL and WINDOW values respectively. See
the nmap manpage for more detailed information.

hping2 can also sample TTL and WINDOW values, but this can prove highly time
consuming in most cases. The tool is more useful for analyzing low-level responses,
as opposed to port scanning in this fashion. hping2 is available from http://www.
eaglenet.org/antirez/hping2.html and http://www.hping.org.

Third-Party and Spoofed TCP Scanning Methods
Third-party port scanning methods allow for probes to be effectively bounced
through vulnerable servers to hide the true source of the network scanning. An addi-
tional benefit of using a third-party technique in this way is that insight into firewall
configuration can be gained by potentially bouncing scans through trusted hosts that
are vulnerable.

FTP bounce scanning

Hosts running outdated FTP services can relay numerous TCP attacks, including
port scanning. There is a flaw in the way many FTP servers handle connections using
the PORT command (see RFC 959 or technical description of the PORT feature) that
allows for data to be sent to user-specified hosts and ports. In their default configura-
tions, the FTP services running on the following platforms are affected:

• FreeBSD 2.1.7 and earlier

• HP-UX 10.10 and earlier

• Solaris 2.6/SunOS 5.6 and earlier

• SunOS 4.1.4 and earlier

• SCO OpenServer 5.0.4 and earlier

• SCO UnixWare 2.1 and earlier

• IBM AIX 4.3 and earlier

• Caldera Linux 1.2 and earlier

• Red Hat Linux 4.2 and earlier

• Slackware 3.3 and earlier

• Any Linux distribution running WU-FTP 2.4.2-BETA-16 or earlier

The FTP bounce attack can have a far more devastating effect if a writable directory
exists because a series of commands or other data can be entered into a file and then
relayed via the PORT command to a specified port of a target host. For example,

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 4: IP Network Scanning

someone can upload a spam email message to a vulnerable FTP server and then send
this email message to the SMTP port of a target mail server. Figure 4-9 shows the
parties involved in FTP bounce scanning.

The following occurs when performing an FTP bounce scan:

1. The attacker connects to the FTP control port (TCP port 21) of the vulnerable
FTP server that she is going to bounce her attack through and enters passive
mode, forcing the FTP server to send data using DTP (data transfer process) to a
specific port of a specific host:

QUOTE PASV

227 Entering Passive Mode (64,12,168,246,56,185).

2. A PORT command is issued, with an argument passed to the FTP service telling it
to attempt a connection to a specific TCP port of the target server; for example,
TCP port 23 of 144.51.17.230:

PORT 144,51,17,230,0,23

200 PORT command successful.

3. After issuing the PORT command, a LIST command is sent. The FTP server then
attempts to create a connection with the target host defined in the PORT com-
mand issued previously:

LIST

150 Opening ASCII mode data connection for file list

226 Transfer complete.

If a 226 response is seen, then the port on the target host is open. If, however, a
425 response is seen, the connection has been refused:

LIST

425 Can't build data connection: Connection refused

Figure 4-9. FTP bounce port scanning

Vulnerable
FTP server

Attacker

Target host

A connection is established to the
FTP control port (TCP 21) and

crafted PORT commands are sent

The FTP server attempts to send
data to specific ports on the target

server, returning a positive response
to the attacker if the port is open

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

TCP Port Scanning | 51

Tools that perform FTP bounce port scanning. nmap for both Unix and Windows can
effectively perform an FTP bounce port scan, using the -P0 and -b flags in the follow-
ing manner:

nmap -P0 -b username:password@ftp-server:port <target host>

Proxy bounce scanning

Attackers bounce TCP attacks through open proxy servers. Depending on the level
of poor configuration, the server will sometimes allow a full-blown TCP port scan to
be relayed. Using proxy servers to perform bounce port scanning in this fashion is
often time consuming, so many attackers prefer to abuse open proxy servers more
efficiently by bouncing actual attacks through to target networks.

ppscan.c, a publicly available Unix-based tool to bounce port scans, can be found in
source form at:

http://www.dsinet.org/tools/network-scanners/ppscan.c
http://www.phreak.org/archives/exploits/unix/network-scanners/ppscan.c

Sniffer-based spoofed scanning

An innovative half-open SYN TCP port scanning method was realized when jsbach
published his spoofscan Unix-based scanner in 1998. The spoofscan tool is run as
root on a given host to perform a stealthy port scan. The key feature that makes this
scanner so innovative is that it places the host network card into promiscuous mode
and then sniffs for responses on the local network segment.

The following unique benefits are immediately realized when using a sniffer-based
spoofing port scanner:

• If you have superuser access to a machine on the same physical network seg-
ment as the target host or a firewall protecting a target host, you can spoof TCP
probes from other IP addresses to identify trusted hosts and to gain insight into
the firewall policy (by spoofing scans from trusted office hosts, for example).
Accurate results will be retrieved because of the background sniffing process,
which monitors the local network segment for responses to your spoofed probes.

• If you have access to a large shared network segment, you can spoof scans from
hosts you don’t have access to or that don’t exist (such as unused IP addresses
within your local network segment), to effectively port scan remote networks in
a distributed and stealthy fashion.

The beauty of this method is that the attacker is abusing his access to the local net-
work segment. Such techniques can even be carried out to good effect in switched
network environments using ARP redirect spoofing and other techniques. spoofscan
is available at http://examples.oreilly.com/networksa/tools/spoofscan.c.

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 4: IP Network Scanning

IP ID header scanning

IP ID header scanning (also known as idle or dumb scanning) is an obscure scanning
technique that involves abusing implementation peculiarities within the TCP/IP
stack of most operating systems. Three hosts are involved:

• The host, from which the scan is launched

• The target host, which will be scanned

• A zombie or idle host, which is an Internet-based server that is queried with
spoofed port scanning against the target host to identify open ports from the per-
spective of the zombie host

IP ID header scanning is extraordinarily stealthy due to its blind nature. Determined
attackers will often use this type of scan to map out IP-based trust relationships
between machines, such as firewalls and VPN gateways.

The listing returned by the scan shows open ports from the perspective of the zom-
bie host, so you can try scanning a target using various zombies you think might be
trusted (such as hosts at remote offices or DMZ machines). Figure 4-10 depicts the
process undertaken during an IP ID header scan.

hping2 was originally used in a manual fashion to perform such low-level TCP scan-
ning, which was time consuming and tricky to undertake against an entire network of
hosts. A white paper that fully discusses using the tool to perform IP ID header scan-
ning by hand is available from http://www.kyuzz.org/antirez/papers/dumbscan.html.

nmap supports such IP ID header scanning with the option:

-sI <zombie host[:probe port]>

Figure 4-10. IP ID header scanning and the parties involved

Idle zombie
host

Attacker

Target host

Probes are sent to the
zombie host throughout, and

the IP ID values analyzed

If the port is open, the target host
sends a SYN/ACK to the zombie,

which affects the IP ID values of the
packets sampled by the attacker

Spoofed TCP SYN packets are sent
to ports on the target host, appearing

to originate from the zombie

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

TCP Port Scanning | 53

Example 4-4 shows how nmap uses this functionality to scan 192.168.0.50 through
192.168.0.155.

If nmap is run without the -P0 flag when performing third-party scan-
ning, the source IP address of the attacker’s host performs ICMP and
TCP pinging of the target hosts before starting to scan; this can appear
in firewall and IDS audit logs of security-conscious organizations.

vscan is another Windows tool that can perform the same inverse IP ID scanning. As
discussed earlier, the vscan utility doesn’t require installation of WinPcap network
drivers. Instead, it uses raw sockets within Winsock 2 (present in Windows 2000,
XP, and 2003). vscan is available at http://host.deluxnetwork.com/~vsniff/vscan.zip.

Figure 4-11 shows the vscan utility in use, along with its options and functionality.

Example 4-4. Using nmap to perform IP ID header scanning

nmap -P0 -sI 192.168.0.155 192.168.0.50

Starting nmap 3.45 (www.insecure.org/nmap/)

Idlescan using zombie 192.168.0.155; Class: Incremental

Interesting ports on (192.168.0.50):

(The 1582 ports scanned but not shown below are in state: closed)

Port State Service

25/tcp open smtp

53/tcp open domain

80/tcp open http

88/tcp open kerberos-sec

135/tcp open loc-srv

139/tcp open netbios-ssn

389/tcp open ldap

443/tcp open https

445/tcp open microsoft-ds

464/tcp open kpasswd5

593/tcp open http-rpc-epmap

636/tcp open ldapssl

1026/tcp open LSA-or-nterm

1029/tcp open ms-lsa

1033/tcp open netinfo

3268/tcp open globalcatLDAP

3269/tcp open globalcatLDAPssl

3372/tcp open msdtc

3389/tcp open ms-term-serv

Nmap run completed -- 1 IP address (1 host up)

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 4: IP Network Scanning

UDP Port Scanning
Because UDP is a connectionless protocol, there are only two ways to effectively enu-
merate accessible UDP network services across an IP network:

• Send UDP probe packets to all 65535 UDP ports, then wait for “ICMP destina-
tion port unreachable” messages to identify UDP ports that aren’t accessible.

• Use specific UDP service clients (such as snmpwalk, dig, or tftp) to send UDP
datagrams to target UDP network services and await a positive response.

Many security-conscious organizations filter ICMP messages to and from their Inter-
net-based hosts, so it is often difficult to assess which UDP services are accessible via
simple port scanning. If “ICMP destination port unreachable” messages can escape
the target network, a traditional UDP port scan can be undertaken to deductively
identify open UDP ports on target hosts.

Figures 4-12 and 4-13 show the UDP packets and ICMP responses generated by
hosts when ports are open and closed.

Figure 4-11. vscan used to launch an IP ID header scan

Figure 4-12. An inverse UDP scan result when a port is open

Attacker Target host

(no response)
UDP probe packet

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

UDP Port Scanning | 55

UDP port scanning is an inverted scanning type in which open ports don’t respond.
What is looked for, in particular, are ICMP destination port unreachable (type 3
code 3) messages from the target host, as shown in Figure 4-13.

Tools That Perform UDP Port Scanning
nmap supports UDP port scanning with the -sU option. The latest version of
Foundstone’s SuperScan also supports UDP port scanning. However, both tools wait
for negative “ICMP destination port unreachable” messages to identify open ports
(i.e., those ports that don’t respond). If these ICMP messages are filtered by a fire-
wall as they try to travel out of the target network, inaccurate results are gleaned.

During a comprehensive audit of Internet-based network space, you should send
crafted UDP client packets to popular services and await a positive response. The
scanudp utility developed by Fryxar (http://www.geocities.com/fryxar/) does this very
well.

Example 4-5 shows the scanudp utility being downloaded, compiled, and run from
my Linux launch system against a Windows 2000 server at 192.168.0.50.

Figure 4-13. An inverse UDP scan result when a port is closed

Example 4-5. Downloading, building, and running scanudp

wget http://www.geocities.com/fryxar/scanudp_v2.tgz

tar xvfz scanudp_v2.tgz

scanudp/

scanudp/scanudp.c

scanudp/enum.c

scanudp/enum.h

scanudp/makefile

scanudp/enum.o

scanudp/scanudp.o

scanudp/scanudp

cd scanudp

make

gcc enum.o scanudp.o -o scanudp

./scanudp

./scanudp v2.0 - by: Fryxar

usage: ./scanudp [options] <host>

Attacker Target host

ICMP destination port unreachable
UDP probe packet

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 4: IP Network Scanning

IDS Evasion and Filter Circumvention
IDS evasion, when launching any type of IP probe or scan, involves one or both of
the following tactics:

• Use of fragmented probe packets, assembled when they reach the target host

• Use of spoofing to emulate multiple fake hosts launching network scanning
probes, in which the real IP address of the scanning host is inserted to collect
results

Filtering mechanisms can be circumvented at times using malformed or fragmented
packets. However, the common techniques used to bypass packet filters at either the
network or system-kernel level are as follows:

• Use of source routing

• Use of specific TCP or UDP source ports

First, I’ll discuss IDS evasion techniques of fragmenting data and emulating multiple
hosts, and then filter circumvention methodologies. These techniques can often be
mixed to launch attacks using source routed, fragmented packets to bypass both fil-
ters and IDS systems.

Fragmenting Probe Packets
Probe packets can be fragmented easily with fragroute to fragment all probe packets
flowing from your host or network or with a port scanner that supports simple frag-
mentation, such as nmap. Many IDS sensors can’t process large volumes of frag-
mented packets because doing so creates a large overhead in terms of memory and
CPU consumption at the network sensor level.

options:

 -t <timeout> Set port scanning timeout

 -b <bps> Set max bandwidth

 -v Verbose

Supported protocol:

echo daytime chargen dns tftp ntp ns-netbios snmp(ILMI) snmp(public)

./scanudp 192.168.0.50

192.168.0.50 53

192.168.0.50 137

192.168.0.50 161

Example 4-5. Downloading, building, and running scanudp (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

IDS Evasion and Filter Circumvention | 57

fragtest

Dug Song’s fragtest utility (available as part of the fragroute package from http://
www.monkey.org/~dugsong/fragroute/) can determine exactly which types of frag-
mented ICMP messages are processed and responded to by the remote host. ICMP
echo request messages are used by fragtest for simplicity and allow for easy analy-
sis; the downside is that the tool can’t assess hosts that don’t respond to ICMP
messages.

After undertaking ICMP probing exercises (such as ping sweeping and hands-on use
of the sing utility) to ensure that ICMP messages are processed and responded to by
the remote host, fragtest can perform three particularly useful tests:

• Send an ICMP echo request message in 8-byte fragments (using the frag option)

• Send an ICMP echo request message in 8-byte fragments, along with a 16-byte
overlapping fragment, favoring newer data in reassembly (using the frag-new

option)

• Send an ICMP echo request message in 8-byte fragments, along with a 16-byte
overlapping fragment, favoring older data in reassembly (using the frag-old

option)

Here is an example that uses fragtest to assess responses to fragmented ICMP echo
request messages with the frag, frag-new, and frag-old options:

fragtest frag frag-new frag-old www.bbc.co.uk

frag: 467.695 ms

frag-new: 516.327 ms

frag-old: 471.260 ms

After ascertaining that fragmented and overlapped packets are indeed processed cor-
rectly by the target host and not dropped by firewalls or security mechanisms, a tool
such as fragroute can be used to fragment all IP traffic destined for the target host.

fragroute

Dug Song’s fragroute utility intercepts, modifies, and rewrites egress traffic destined
for a specific host, according to a predefined rule set. When built and installed, Ver-
sion 1.2 comprises the following binary and configuration files:

/usr/local/sbin/fragtest
/usr/local/sbin/fragroute
/usr/local/etc/fragroute.conf

The fragroute.conf file defines the way fragroute fragments, delays, drops, dupli-
cates, segments, interleaves, and generally mangles outbound IP traffic.

Using the default configuration file, fragroute can be run from the command line in
the following manner:

cat /usr/local/etc/fragroute.conf

tcp_seg 1 new

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

58 | Chapter 4: IP Network Scanning

ip_frag 24

ip_chaff dup

order random

print

fragroute

Usage: fragroute [-f file] dst

fragroute 192.168.102.251

fragroute: tcp_seg -> ip_frag -> ip_chaff -> order -> print

Egress traffic processed by fragroute is displayed in tcpdump format if the print

option is used in the configuration file. When running fragroute in its default config-
uration, TCP data is broken down into 1-byte segments and IP data into 24-byte seg-
ments, along with IP chaffing and random reordering of the outbound packets.

fragroute.conf. The fragroute manpage covers all the variables that can be set within
the configuration file. The type of IP fragmentation and reordering used by fragtest
when using the frag-new option can be applied to all outbound IP traffic destined for
a specific host by defining the following variables in the fragroute.conf file:

ip_frag 8 old

order random

print

TCP data can be segmented into 4-byte, forward-overlapping chunks (favoring
newer data), interleaved with random chaff segments bearing older timestamp
options (for PAWS elimination), and reordered randomly using these fragroute.conf
variables:

tcp_seg 4 new

tcp_chaff paws

order random

print

I recommend testing the variables used by fragroute in a controlled environment
before live networks and systems are tested. This ensures that you see decent results
when passing probes through fragroute and allows you to check for adverse reac-
tions to fragmented traffic being processed. Applications and hardware appliances
alike have been known to crash and hang from processing heavily fragmented and
mangled data!

nmap

nmap can fragment probe packets when launching half-open SYN or inverse TCP
scanning types. The TCP header itself is split over several packets to make it more
difficult for packet filters and IDS systems to detect the port scan. While most fire-
walls in high security environments queue all the IP fragments before processing
them, some networks disable this functionality because of the performance hit
incurred. Example 4-6 uses nmap to perform a half-open SYN TCP scan using frag-
mented packets.

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

IDS Evasion and Filter Circumvention | 59

Emulating Multiple Attacking Hosts
By emulating a large number of attacking hosts all launching probes and port scans
against a target network, IDS alert and logging systems will be rendered effectively
useless. nmap allows for decoy hosts to be defined, so that a target host can be
scanned from a plethora of spoofed addresses (thus obscuring your own IP address).

The flag that defines decoy addresses within nmap is -D [decoy1,ME,decoy2,decoy3,...].
Example 4-7 shows nmap being used in this fashion to scan 192.168.102.251.

Notice that the -P0 flag is also specified. When performing any kind of stealth attack,
it is important that even initial probing (in the case of nmap, an ICMP echo request
and attempted connection to TCP port 80) isn’t undertaken, because it will reveal
the true source of the attack in many cases.

Source Routing
Source routing is a feature traditionally used for network troubleshooting purposes.
Tools such as traceroute can be provided with details of gateways the packet should
be loosely or strictly routed through so that specific routing paths can be tested.
Source routing allows you to specify which gateways and routes your packets should

Example 4-6. Using nmap to perform a fragmented SYN scan

nmap -sS -f 192.168.102.251

Starting nmap 3.45 (www.insecure.org/nmap/)

Interesting ports on cartman (192.168.102.251):

(The 1524 ports scanned but not shown below are in state: closed)

Port State Service

25/tcp open smtp

53/tcp open domain

8080/tcp open http-proxy

Nmap run completed -- 1 IP address (1 host up) scanned in 0 seconds

Example 4-7. Using nmap to specify decoy addresses

nmap -sS -P0 -D 62.232.12.8,ME,65.213.217.241 192.168.102.251

Starting nmap 3.45 (www.insecure.org/nmap/)

Interesting ports on cartman (192.168.102.251):

(The 1524 ports scanned but not shown below are in state: closed)

Port State Service

25/tcp open smtp

53/tcp open domain

8080/tcp open http-proxy

Nmap run completed -- 1 IP address (1 host up) scanned in 0 seconds

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 4: IP Network Scanning

take, instead of allowing routers and gateways to query their own routing tables to
determine the next hop.

Source routing information is provided as an IP options field in the packet header, as
shown in Figure 4-14.

The format of the IP option data within a source-routed packet is quite simple. The
first three bytes are reserved for IP option code, length, and pointer. Because IP
option data can be used for different functionality (timestamp, strict routing, route,
and record), the code field specifies the option type. The length field, oddly enough,
states the size of the optional data, which can’t be larger than 40. Finally, the offset
pointer field points to the current IP address in the remaining data section, which is
rewritten as the packet traverses the Internet. Figure 4-15 demonstrates the offset
pointer in action.

There are two types of source routing, both defined in RFC 791:

• Strict Source and Route Record (SSRR)

• Loose Source and Route Record (LSRR)

Figure 4-14. IP datagram format

Figure 4-15. The source routing IP option and flags

0 4 8 16 32

Vers H Len TOS Total length

Identification Flags Fragment offset

Time to live Protocol Header checksum

Source IP address

Destination IP address

IP options (if any) Padding

Data

IP Datagram Format

Code Length Pointer Router data

P 128.2.3.4 128.7.8.9 128.10.4.12

P 128.2.3.4 128.7.8.9 128.10.4.12

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

IDS Evasion and Filter Circumvention | 61

Loose source routing allows the packet to use any number of intermediate gateways
to reach the next address in the route. Strict source routing requires the next address
in the source route to be on a directly connected network; if not, the delivery of the
packet can’t be completed.

The source route options have a variable length, containing a series of IP addresses
and an offset pointer indicating the next IP address to be processed. A source-routed
datagram completes its delivery when the offset pointer points beyond the last field
and the address in the destination address has been reached.

There is a limit of 40 characters for the router data within the IP options field. With
3 bytes used for the header information and 4 bytes committed for the final host
address, there remain only 33 bytes to define loose hops, so 8 IP addresses can be
defined in the list of hops (not counting the final destination host).

Source routing vulnerabilities can be exploited by:

• Reversing the source route

• Circumventing filters and gaining access to internal hosts

If a firewall or gateway reverses the source routing information when sending pack-
ets back, you can sniff traffic at one of the hops you defined. In a similar fashion to
using sniffer-based spoofed scanning, you can launch scans and probes from poten-
tially trusted hosts (e.g., branch office firewalls) and acquire accurate results.

In the case of Microsoft Windows NT hosts, the circumvention of filters involves
manipulating the source routing options information to have an offset pointer set
greater than the length of the list of hops and defining an internal host as the last hop
(which is then reversed, sending the packet to the internal host). This vulnerability is
indexed as SecurityFocus BID 646, accessible at http://www.securityfocus.com/bid/646.

Assessing source-routing vulnerabilities

Todd MacDermid of Syn Ack Labs (http://www.synacklabs.net) has written two
excellent tools that can assess and exploit source routing vulnerabilities found in
remote networks:

lsrscan
http://www.synacklabs.net/projects/lsrscan/

lsrtunnel
http://www.synacklabs.net/projects/lsrtunnel/

Both tools require libpcap and libdnet to build, and they run quite smoothly in
Linux and BSD environments. A white paper written by Todd that explains source
routing problems in some detail is also available from http://www.synacklabs.net/
OOB/LSR.html.

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 4: IP Network Scanning

lsrscan. The lsrscan tool crafts probe packets with specific source routing options to
determine exactly how remote hosts deal with source-routed packets. The tool
checks for the following two problems:

• Whether the target host reverses the source route when sending packets back

• Whether the target host can forward source-routed packets to an internal host,
by setting the offset pointer to be greater than the number of hops defined in the
loose hop list

The basic usage of the tool is as follows:

lsrscan

usage: lsrscan [-p dstport] [-s srcport] [-S ip]

 [-t (to|through|both)] [-b host<:host ...>]

 [-a host<:host ...>] <hosts>

Some operating systems will reverse source-routed traffic only to ports that are open,
so lsrscan should be run against an open port. By default, lsrscan uses a destination
port of 80. The source port and source IP addresses aren’t so necessary (lsrscan
selects a random source port and IP address) but can be useful in some cases.

The -b option inserts IP addresses of hops before the user’s host in the source route
list. Likewise, the -a option inserts specific IP addresses after the user’s host in the list
(although those hosts must support source route forwarding for the scan to be effec-
tive). For more information about the flags and options that can be parsed, consult
the lsrscan manpage. Example 4-8 shows lsrscan being run against a network block
to identify source routing problems.

Because some systems reverse the source route, spoofing attacks using lsrtunnel can
be performed. Knowing that systems forward source-routed traffic, accurate details
of internal IP addresses need to be gained so that port scans can be launched through
fragroute to internal space.

lsrtunnel. lsrtunnel spoofs connections using source-routed packets. For the tool to
work, the target host must reverse the source route (otherwise the user will not see
the responses and be able to spoof a full TCP connection). lsrtunnel requires a spare
IP address on the local subnet to use as a proxy for the remote host.

Example 4-8. Using lsrscan to identify source routing issues

lsrscan 217.53.62.0/24

217.53.62.0 does not reverse LSR traffic to it

217.53.62.0 does not forward LSR traffic through it

217.53.62.1 reverses LSR traffic to it

217.53.62.1 forwards LSR traffic through it

217.53.62.2 reverses LSR traffic to it

217.53.62.2 does not forward LSR traffic through it

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

IDS Evasion and Filter Circumvention | 63

Running lsrtunnel with no options shows the usage syntax:

lsrtunnel

usage: ./lsrtunnel -i <proxy IP> -t <target IP> -f <spoofed IP>

The proxy IP is an unused network address an attacker uses to proxy connections
between her host and the target address. The spoofed IP address is the host that
appears as the originator of the connection. For additional detail, consult the lsrtun-
nel manpage.

In this example of lsrtunnel in use, 192.168.102.2 is on the same local subnet as the
host:

lsrtunnel -i 192.168.102.2 -t 217.53.62.2 -f relay2.ucia.gov

At this point, lsrtunnel listens for traffic on the proxy IP (192.168.102.2). Using
another system on the network, any TCP-based scan or attack launched against the
proxy IP, is forwarded to the target (217.53.62.2) and appears as if it originated from
relay2.ucia.gov.

Using Specific TCP and UDP Source Ports
When using a tool such as nmap to perform either UDP or TCP port scanning of
hosts, it is important to assess responses using specific source ports. Here are four
source ports you should use along with UDP, half-open SYN, and inverse FIN scan
types:

• TCP or UDP port 53 (DNS)

• TCP port 20 (FTP data)

• TCP port 80 (HTTP)

• TCP or UDP port 88 (Kerberos)

Using specific source ports, attackers can take advantage of firewall configuration
issues. UDP port 53 (DNS) is a good candidate when circumventing stateless packet
filters because machines inside the network need to communicate with external DNS
servers, which in turn respond using UDP port 53. Typically, a rule is put in place
allowing traffic from UDP port 53 to destination port 53 or anything above 1024 on
the internal client machine.

Check Point Firewall-1, Cisco PIX, and other stateful firewalls aren’t vulnerable to
these issues (unless grossly misconfigured) because they maintain a state table and
allow traffic back into the network only if a relative outbound connection or request
has been initiated.

An inverse FIN scan should be attempted when scanning the HTTP service port
because a Check Point Firewall-1 option known as fastmode is sometimes enabled
for web traffic in high throughput environments (to limit use of firewall processing
resources). For specific information regarding circumvention of Firewall-1 in certain

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 4: IP Network Scanning

configurations, consult the excellent presentation from Black Hat Briefings 2000 by
Thomas Lopatic, John McDonald, and Dug Song, titled “A Stateful Inspection of
Firewall-1” (available as a Real media video stream and Powerpoint presentation
from http://www.blackhat.com/html/bh-usa-00/bh-usa-00-speakers.html).

On Windows 2000 and other Microsoft platforms that can run IPsec, a handful of
default exemptions to the IPsec filter exist, including one that allows Kerberos
(source TCP or UDP port 88) traffic into the host if the filter is enabled. These
default exemptions are removed in Windows Server 2003, but still pose a problem in
some environments that rely on filtering at the operating-system kernel level.

With the -g option, nmap can launch a half-open TCP SYN port scan that uses the
source port of 88 against a Windows 2000 server running IPsec filtering, as shown in
Example 4-9.

Example 4-9. Using nmap to specify source ports when scanning

nmap -sS -g 88 192.168.102.250

Starting nmap 3.45 (www.insecure.org/nmap/)

Interesting ports on kenny (192.168.102.250):

(The 1528 ports scanned but not shown below are in state: closed)

Port State Service

7/tcp open echo

9/tcp open discard

13/tcp open daytime

17/tcp open qotd

19/tcp open chargen

21/tcp open ftp

25/tcp open smtp

42/tcp open nameserver

53/tcp open domain

80/tcp open http

88/tcp open kerberos-sec

135/tcp open loc-srv

139/tcp open netbios-ssn

389/tcp open ldap

443/tcp open https

445/tcp open microsoft-ds

464/tcp open kpasswd5

515/tcp open printer

548/tcp open afpovertcp

593/tcp open http-rpc-epmap

636/tcp open ldapssl

1026/tcp open nterm

2105/tcp open eklogin

6666/tcp open irc-serv

Nmap run completed -- 1 IP address (1 host up) scanned in 1 second

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Low-Level IP Assessment | 65

Low-Level IP Assessment
Tools such as nmap, hping2, and firewalk perform low-level IP assessment. Some-
times holes exist to allow certain TCP services through the firewall, but the expected
service isn’t running on the target host. Such low-level network details are useful to
know, especially in sensitive environments (e.g., online banking environments),
because very small holes in network integrity can sometimes be abused along with
larger problems to gain or retain access to target hosts.

Insight into the following areas of a network can be gleaned through low-level IP
assessment:

• Uptime of target hosts (by analyzing the TCP timestamp option)

• TCP services that are permitted through the firewall (by analyzing responses to
TCP and ICMP probes)

• TCP sequence and IP ID incrementation (by running predictability tests)

• The operating system of the target host (using IP fingerprinting)

nmap automatically attempts to calculate target host uptime information by analyz-
ing the TCP timestamp option values of packets received. The TCP timestamp
option is defined in RFC 1323; however, many platforms don’t adhere to RFC 1323.
This feature often gives accurate results against Linux operating systems and others
such as FreeBSD, but your mileage may vary.

Analyzing Responses to TCP Probes
A TCP probe always results in one of four responses. These responses potentially
allow an analyst to identify where a connection was accepted, or why and where it
was rejected, dropped, or lost:

TCP SYN/ACK
If a SYN/ACK packet is received, the port is considered open.

TCP RST/ACK
If a RST/ACK packet is received, the probe packet was either rejected by the tar-
get host or an upstream security device (e.g., a firewall with a reject rule in its
policy).

ICMP type 3 code 13
If an ICMP type 3 code 13 message is received, the host (or a device such as a
firewall) has administratively prohibited the connection according to an access
control list (ACL) rule set.

Nothing
If no packet is received, an intermediary security device silently dropped it.

nmap returns details of ports that are open, closed, filtered, and unfiltered in line
with this list. The unfiltered state is reported by nmap from time to time, depending

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 4: IP Network Scanning

on the number of filtered ports found. If some ports don’t respond, but others
respond with RST/ACK, the unresponsive ports are considered unfiltered (because
the packet is allowed through the filter but the associated service isn’t running on the
target host).

hping2 can be used on a port-by-port basis to perform low-level analysis of responses
to crafted TCP packets that are sent to destination network ports of remote hosts.
Another useful tool is firewalk, which performs filter analysis by sending UDP or
TCP packets with specific TTL values. These unique features of hping2 and firewalk
are discussed next.

hping2

hping2 allows you to craft and send TCP packets to remote hosts with specific flags
and options set. From analyzing responses at a low level, it is often possible to gain
insight into the filter configuration at network level. The tool is complex to use, and
it has many possible options. Table 4-3 lists the most useful flags for performing low-
level TCP assessment.

Here’s a best practice way to use hping2 to assess a specific TCP port:

hping2 -c 3 -s 53 -p 139 -S 192.168.0.1

HPING 192.168.0.1 (eth0 192.168.0.1): S set, 40 headers + 0 data

ip=192.168.0.1 ttl=128 id=275 sport=139 flags=SAP seq=0 win=64240

ip=192.168.0.1 ttl=128 id=276 sport=139 flags=SAP seq=1 win=64240

ip=192.168.0.1 ttl=128 id=277 sport=139 flags=SAP seq=2 win=64240

In this example, a total of three TCP SYN packets are sent to port 139 on 192.168.0.1

using the source port 53 of the host (some firewalls ship with a configuration that
allows DNS traffic through the filter with an any-any rule, so it is sometimes fruitful
to use a source port of 53).

Following are four examples of hping2 that generate responses in line with the four
states discussed previously (open, closed, blocked, or dropped).

Table 4-3. hping2 options

Option Description

-c <number> Send a specific number of probe packets

-s <port> Source TCP port (random by default)

-d <port> Destination TCP port

-S Set the TCP SYN flag

-F Set the TCP FIN flag

-A Set the TCP ACK flag

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Low-Level IP Assessment | 67

TCP port 80 is open:

hping2 -c 3 -s 53 -p 80 -S google.com

HPING google.com (eth0 216.239.39.99): S set, 40 headers + 0 data

ip=216.239.39.99 ttl=128 id=289 sport=80 flags=SAP seq=0 win=64240

ip=216.239.39.99 ttl=128 id=290 sport=80 flags=SAP seq=1 win=64240

ip=216.239.39.99 ttl=128 id=291 sport=80 flags=SAP seq=2 win=64240

TCP port 139 is closed or access to the port is rejected by a firewall:

hping2 -c 3 -s 53 -p 139 -S 192.168.0.1

HPING 192.168.0.1 (eth0 192.168.0.1): S set, 40 headers + 0 data

ip=192.168.0.1 ttl=128 id=283 sport=139 flags=R seq=0 win=64240

ip=192.168.0.1 ttl=128 id=284 sport=139 flags=R seq=1 win=64240

ip=192.168.0.1 ttl=128 id=285 sport=139 flags=R seq=2 win=64240

TCP port 23 is blocked by a router ACL:

hping2 -c 3 -s 53 -p 23 -S gw.example.org

HPING gw (eth0 192.168.0.254): S set, 40 headers + 0 data

ICMP unreachable type 13 from 192.168.0.254

ICMP unreachable type 13 from 192.168.0.254

ICMP unreachable type 13 from 192.168.0.254

TCP probe packets are dropped in transit:

hping2 -c 3 -s 53 -p 80 -S 192.168.10.10

HPING 192.168.10.10 (eth0 192.168.10.10): S set, 40 headers + 0 data

firewalk

Mike Schiffman and Dave Goldsmith’s firewalk utility (Version 5.0 at the time of
writing) allows assessment of firewalls and packet filters by sending IP packets with
TTL values set to expire one hop past a given gateway. Three simple states allow you
to determine if a packet has passed through the firewall or not:

• If an ICMP type 11 code 0 (TTL exceeded in transit) message is received, the
packet passed through the filter, and a response was later generated.

• If the packet is dropped without comment, it was probably done at the gateway.

• If an ICMP type 3 code 13 (communication administratively prohibited) message
is received, a simple filter such as a router ACL is being used.

If the packet is dropped without comment, this doesn’t necessarily mean that traffic
to the target host and port is filtered. Some firewalls know that the packet is due to
expire and send the expired message whether the policy allows the packet or not.

firewalk works effectively against hosts in true IP routed environments, as opposed
to hosts behind firewalls using network address translation (NAT). I recommend
reading the firewalk white paper written by Mike Schiffman and Dave Goldsmith,
available from http://www.packetfactory.net/projects/firewalk/firewalk-final.pdf.

Example 4-10 shows firewalk being run against a host to assess filters in place for a
selection of TCP ports (21, 22, 23, 25, 53, and 80). The utility requires two IP

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

68 | Chapter 4: IP Network Scanning

addresses: the gateway (gw.test.org in this example) and the target (www.test.org in
this example) that is behind the gateway.

The tool first performs an effective traceroute to the target host in order to calculate
the number of hops involved. Upon completing this initial reconnaissance, crafted
TCP packets are sent with specific IP TTL values. By analyzing the responses from
the target network and looking for ICMP type 11 code 0 messages, an attacker can
reverse-engineer the filter policy of gw.test.org.

Passively Monitoring ICMP Responses
As port scans and network probes are launched, you can passively monitor all traffic
using ethereal or tcpdump. Often, you will see ICMP responses from border routers
and firewalls, including:

• ICMP TTL exceeded (type 11 code 0) messages, indicating a routing loop

• ICMP administratively prohibited (type 3 code 13) messages, indicating a fire-
wall or router that rejects certain packets in line with an ACL

These ICMP response messages give insight into the target network’s setup and con-
figuration. It is also possible to determine IP alias relationships in terms of firewalls
performing NAT and other functions to forward traffic to other hosts and devices
(for example, if you are probing a public Internet address but see responses from a
private address in your sniffer logs).

Example 4-10. Using firewalk to assess network filtering

firewalk -n -S21,22,23,25,53,80 -pTCP gw.test.org www.test.org

Firewalk 5.0 [gateway ACL scanner]

Firewalk state initialization completed successfully.

TCP-based scan.

Ramping phase source port: 53, destination port: 33434

Hotfoot through 217.41.132.201 using 217.41.132.161 as a metric.

Ramping Phase:

 1 (TTL 1): expired [192.168.102.254]

 2 (TTL 2): expired [212.38.177.41]

 3 (TTL 3): expired [217.41.132.201]

Binding host reached.

Scan bound at 4 hops.

Scanning Phase:

port 21: A! open (port listen) [217.41.132.161]

port 22: A! open (port not listen) [217.41.132.161]

port 23: A! open (port listen) [217.41.132.161]

port 25: A! open (port not listen) [217.41.132.161]

port 53: A! open (port not listen) [217.41.132.161]

port 80: A! open (port not listen) [217.41.132.161]

Scan completed successfully.

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Low-Level IP Assessment | 69

IP Fingerprinting
Various operating platforms have their own interpretations of IP-related standards
when receiving certain types of packets and responding to them. By analyzing
responses from Internet-based hosts carefully, attackers often can guess the operat-
ing platform of the target host via IP fingerprinting, usually by assessing and sam-
pling the following IP responses:

• TCP FIN probes and bogus flag probes

• TCP sequence number sampling

• TCP WINDOW sampling

• TCP ACK value sampling

• ICMP message quoting

• ICMP ECHO integrity

• Responses to IP fragmentation

• IP TOS (type of service) sampling

Originally, tools such as cheops and queso were developed specifically to guess target
system operating platforms; however, the first publicly available tool to perform this
was sirc3, which simply detected the difference between BSD-derived, Windows, and
Linux TCP stacks.

Today, nmap performs a large number of IP fingerprinting tests to guess the remote
operating platform. To enable IP fingerprinting when running nmap, simply use the
-O flag in combination with a scan type flag such as -sS, as shown in Example 4-11.

Example 4-11. Using nmap to perform IP fingerprinting

nmap -O -sS 192.168.0.65

Starting nmap 3.45 (www.insecure.org/nmap/)

Interesting ports on 192.168.0.65:

(The 1585 ports scanned but not shown below are in state: closed)

Port State Service

22/tcp open ssh

25/tcp open smtp

53/tcp open domain

80/tcp open http

88/tcp open kerberos-sec

110/tcp open pop-3

135/tcp open loc-srv

139/tcp open netbios-ssn

143/tcp open imap2

389/tcp open ldap

445/tcp open microsoft-ds

464/tcp open kpasswd5

593/tcp open http-rpc-epmap

636/tcp open ldapssl

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 4: IP Network Scanning

TCP Sequence and IP ID Incrementation
If TCP sequence numbers are generated in a predictable way by the target host, then
blind spoofing and hijacking can occur (although this is usually limited to internal
network spaces). Older Windows operating platforms suffer from this because the
sequence numbers are simply incremented instead of randomly generated.

If the IP ID value is incremental, the host can be used as a third party to perform IP
ID header scanning as discussed in the section “IP ID header scanning.” IP ID header
scanning requires the ID values returned from the third party to be incremental so
that accurate scan results can be gathered.

Example 4-12 shows nmap being run in verbose mode (-v) with TCP/IP fingerprint-
ing (-O). Setting both options shows the results of both TCP and IP ID sequence
number predictability tests.

1026/tcp open LSA-or-nterm

1029/tcp open ms-lsa

1352/tcp open lotusnotes

3268/tcp open globalcatLDAP

3269/tcp open globalcatLDAPssl

3372/tcp open msdtc

Remote OS guesses: Windows 2000 or WinXP

Nmap run completed -- 1 IP address (1 host up)

Example 4-12. Using nmap to test TCP and IP ID sequences

nmap -v -sS -O 192.168.102.251

Starting nmap 3.45 (www.insecure.org/nmap/)

Interesting ports on cartman (192.168.102.251):

(The 1524 ports scanned but not shown below are in state: closed)

Port State Service

25/tcp open smtp

53/tcp open domain

8080/tcp open http-proxy

Remote OS guesses: Windows 2000 RC1 through final release

TCP Sequence Prediction: Class=random positive increments

 Difficulty=15269 (Worthy challenge)

IPID Sequence Generation: Incremental

Nmap run completed -- 1 IP address (1 host up) scanned in 1 second

Example 4-11. Using nmap to perform IP fingerprinting (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Network Scanning Recap | 71

Network Scanning Recap
Different IP network scanning methods allow you to test and effectively identify vul-
nerable network components. Here is a list of effective network scanning techniques
and their applications:

ICMP scanning and probing
By launching an ICMP ping sweep, you can effectively identify poorly protected
hosts (as security conscious administrators filter inbound ICMP messages) and
perform a degree of operating-system fingerprinting and reconnaissance by ana-
lyzing responses to the ICMP probes.

Half-open SYN flag TCP port scanning
A SYN port scan is often the most effective type of port scan to launch directly
against a target IP network space. SYN scanning is extremely fast, allowing you
to scan large networks quickly.

Inverse TCP port scanning
Inverse scanning types (particularly FIN, Xmas, and NULL) take advantage of
idiosyncrasies in certain TCP/IP stack implementations. This scanning type isn’t
effective when scanning large network spaces, although it is useful when testing
and investigating the security of specific hosts and small network segments.

Third-party TCP port scanning
Using a combination of vulnerable network components and TCP spoofing,
third-party TCP port scans can be effectively launched. Scanning in this fashion
has two benefits: hiding the true source of a TCP scan and assessing the filters
and levels of trust between hosts. Although time consuming to undertake, third-
party scanning is extremely useful when applied correctly.

UDP port scanning
Identifying accessible UDP services can be undertaken easily only if ICMP type 3
code 3 (destination port unreachable) messages are allowed back through filter-
ing mechanisms that protect target systems. UDP services can sometimes be
used to gather useful data or directly compromise hosts (the DNS, SNMP, TFTP,
and BOOTP services in particular).

IDS evasion and filter circumvention
Intrusion detection systems and other security mechanisms can be rendered inef-
fective by using multiple spoofed decoy hosts when scanning or by fragmenting
probe packets using nmap or fragroute. Filters such as firewalls, routers, and
even software (including the Microsoft IPsec filter) can sometimes be bypassed
using specific source TCP or UDP ports, source routing, or stateful attacks.

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

72 | Chapter 4: IP Network Scanning

Network Scanning Countermeasures
Here is a checklist of countermeasures to use when considering technical modifica-
tions to networks and filtering devices to reduce the effectiveness of network scan-
ning and probing undertaken by attackers:

• Filter inbound ICMP message types at border routers and firewalls. This forces
attackers to use full-blown TCP port scans against all of your IP addresses to
map your network correctly.

• Filter all outbound ICMP type 3 unreachable messages at border routers and
firewalls to prevent UDP port scanning and firewalking from being effective.

• Consider configuring Internet firewalls so that they can identify port scans and
throttle the connections accordingly. You can configure commercial firewall
appliances (such as those from Check Point, NetScreen, and WatchGuard) to
prevent fast port scans and SYN floods being launched against your networks.
On the open source side, there are many tools such as portsentry that can iden-
tify port scans and drop all packets from the source IP address for a given period
of time.

• Assess the way that your network firewall and IDS devices handle fragmented IP
packets by using fragtest and fragroute when performing scanning and probing
exercises. Some devices crash or fail under conditions in which high volumes of
fragmented packets are being processed.

• Ensure that your routing and filtering mechanisms (both firewalls and routers)
can’t be bypassed using specific source ports or source-routing techniques.

• If you house publicly accessible FTP services, ensure that your firewalls aren’t
vulnerable to stateful circumvention attacks relating to malformed PORT and
PASV commands.

• If a commercial firewall is in use, ensure the following:

• The latest service pack is installed.

• Antispoofing rules have been correctly defined, so that the device doesn’t
accept packets with private spoofed source addresses on its external inter-
faces.

• Fastmode services aren’t used in Check Point Firewall-1 environments.

• Investigate using inbound proxy servers in your environment if you require a
high level of security. A proxy server will not forward fragmented or malformed
packets, so it isn’t possible to launch FIN scanning or other stealth methods.

• Be aware of your own network configuration and its publicly accessible ports by
launching TCP and UDP port scans along with ICMP probes against your own
IP address space. It is surprising how many large companies still don’t properly
undertake even simple port-scanning exercises.

